人工オパールを利用した

周期構造の形成による表面特性の付与

小野 洋介 (機械・材料技術部 ナノ材料グループ)

1. はじめに

虹色に輝く宝石として知られるオパールは、可視光の波 長と同程度の数百ナノメートルオーダーの物理的な周期 構造を有しており、その周期の距離に応じた波長の可視光 を強く反射することにより、その特徴的な色彩を発現する。 オパールの微構造とそれに由来する色彩は、数百ナノメー トルの球状粒子を作製し最密充填することで人工的に模 做でき、「人工オパール」として光学分野で応用が進めら れている。 1998年には、人工オパールをテンプレートと して作製される多孔体 (インバースオパール) が発表され 1)、ますます技術が発展してきている。インバースオパー ルは、人工オパールと他材料から構成される複合体のうち 人工オパールのみを選択的に除去することで作製され、微 細な孔が三次元で連なる周期構造を有する。粒径を制御し やすいポリマー製の人工オパールが用いられることが多 く、除去の工程で高温焼成または溶媒抽出を要するため、 有害な排ガスや廃液が発生する点に課題が残されている。

これまで人工オパールやインバースオパールは、前記の 周期構造を活かし光制御等の光学分野での応用が図られ てきたが、本研究では、酸化ケイ素の親水性と耐熱性に着 眼し、酸化ケイ素製人工オパールの新しい応用技術として プラスチック基材への親水・疎水表面の形成を試みた³⁾。 疎水表面の形成にあたっては、廃液や排ガスを排出しない シンプルなプロセスにより、二次元周期の微細な穴をプラ スチック表面に形成した。当所単独で特許を出願しており ³⁾、企業への技術移転を目的として、本報にて研究成果を 紹介する。

2. 実験及び結果

人工オパールは、古くから知られる Stöber 法 4と呼ばれ る液相合成法により作製した。ガラス瓶にオルトケイ酸テ トラエチル(TEOS)とエタノール水溶液を混ぜ、アンモニア 水を添加して TEOS の加水分解・脱水縮合反応を促進させ、 粒子を析出させた²⁻³⁾。図 1(a)に示すように、反応初期は 紫~青色の波長の短い光を散乱する微粒子が視認され、室 温で1時間程度撹拌し続けると白濁した。 蓋を開けた状態 で分散液を数日間静置すると、液が蒸発しバルク体の人工 オパールが得られた。ガラス瓶の内面積に応じて任意の大 きさの人工オパールを作製することが可能であったが、本 研究では、目的とする試作に大面積を必要としないことと 取扱い性の理由から図 1(b)のようにランダムな形状に割 った状態で使用した。同図から分かるように、観察する角 度によって青、緑、赤等の異なる色が確認された。なお、 遠心分離機を用いて、固液分離の工程を大幅に短縮するこ とも可能であった。

図2に示すように、作製した人工オパールをホットプレ ートで190°Cに加熱したプラスチック基材(ポリスチレン またはポリプロピレン)に手で接触させ、空冷後に人工オ パールを部分的に剥離した。ポリスチレンを基材として用 いて得られた試料表面の微構造を、走査電子顕微鏡(JEOL JSM-6510, 10kV)で観察した結果を図3に示す。人工オパ ールを担持した表面では、直径約250 nmに大きさの揃っ た球状粒子が観察された。一方、人工オパールを剥離した 表面では、直径約200 nmに大きさの揃った周期的に配列 する穴が観察された。

図 1. (a)酸化ケイ素粒子分散液と(b)バルク体の外観

図 2. 本研究で提案する親水・疎水表面形成プロセス

図 3. 走査電子顕微鏡による観察像; (a) 人工オパールを担

持した表面、(b)人エオパールを剥離した表面

接触角計(協和界面科学 DropMaster 300)を用いて室温 で水接触角を測定した結果、人工オパールを剥離した表面 では104°であり、ポリスチレン基材の水接触角90°と比べ て高い値を示した。一方、人工オパールを担持した表面で は吸水され測定不能であった。

3. 考察

作製した人工オパールは、観察角度によって異なる色が 観られたことから、宝石と同様に物理的な周期構造に由来 して発色したと考えられる。電子顕微鏡像(図 3)は最表面 の観察像であるため球状粒子の規則的配列を確認しにく いが、粒子サイズが高度に揃っていることは確認できた。 パチンコ玉を敷きつめると自然と最密充填する現象と同 様に、分散液の静置の工程においてサイズの揃った粒子が 最密充填のように規則的に配列して周期構造を形成した ため、発色したと思われる。

人工オパールを剥離した表面で水接触角が増大した結 果は、Cassie-Baxter モデル⁵⁾として知られるメカニズムの ように、穴の形成により水が空気と接触したことに由来す ると考えられる。これは、部分的に超撥水表面が形成され たと言い換えることもできる。一方、人工オパール担持表 面で水が粒子表面に濡れ内部まで浸透した結果は、人工オ パールを構成する酸化ケイ素粒子の親水性と多孔性に由 来すると思われる。酸化ケイ素粒子の多孔性を評価するた めに N₂-BET 法による比表面積を測定したところ、人工オ パールの測定値(31 m²/g)が、粒径と密度から算出される計 算値(11 m²/g)と比較して約3倍であった。このような多孔 質な酸化ケイ素からなる人工オパールを作製し用いたこ とが、親水的な特徴を強調する結果につながったと思われ る。

4. 今後の展開

本研究では、人工オパールの新たな応用技術として、こ れをプラスチック表面に担持することにより親水表面を、 剥離して微細な穴を形成することにより疎水表面を形成 できることを示した。ポリプロピレンを基材とした場合に は柔軟に曲げられる試料が得られたことから、親水・疎水 表面の特徴とあわせて、フレキシブルな印刷版としての利 用を期待している。また、通常の機械加工では1ミクロン 以下の超微細加工が困難であること、レーザーや電子線に よる描画では生産性が低く高コストであることを鑑みる と、本研究で提案した手法は安価な超微細加工技術として の応用も期待できる。ご興味をお持ちの方は、機械・材料 技術部までご連絡いただきたい。

【参考文献】

- 1. B.T. Holland et al., Science, 281, 538-540 (1998).
- 2. Y. Ono, Chem. Lett., 48, 541-543 (2019).
- 3. 特願 2018-150838
- 4. W. Stöber et al., J. Colloid Interf. Sci., 26, 62-69 (1968).

5. A.B.D. Cassie and S. Baxter, *Trans Faraday Soc.*, 40, 546-551 (1944).

【外部発表】論文等発表 1件